Model transformation for robust speaker recognition from telephone data

نویسندگان

  • Françoise Beaufays
  • Mitch Weintraub
چکیده

In the context of automatic speaker recognition, we propose a model transformation technique that renders speaker models more robust to acoustic mismatches and to data scarcity by appropriately increasing their variances. We use a stereo database containing speech recorded simultaneously under di erent acoustic conditions to derive a synthetic variance distribution. This distribution is then used to modify the variances of other speaker models from other telephone databases. The technique is illustrated with experiments conducted on a locally collected database and on the NIST'95 and '96 subsets of the Switchboard Corpus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust text-independent speaker identification over telephone channels

This paper addresses the issue of closed-set text-independent speaker identification from samples of speech recorded over the telephone. It focuses on the effects of acoustic mismatches between training and testing data, and concentrates on two approaches: 1) extracting features that are robust against channel variations and 2) transforming the speaker models to compensate for channel effects. ...

متن کامل

A robust compensation strategy for extraneous acoustic variations in spontaneous speech recognition

In this paper, we propose a robust compensation strategy to deal effectively with extraneous acoustic variations for spontaneous speech recognition. This strategy extends speaker adaptive training, and uses hidden Markov models (HMM) parameter transformations to normalize the extraneous variations in the training data according to a set of predefined conditions. A “compact” model and the associ...

متن کامل

Acoustic Model Training Using Pseudo-Speaker Features Generated by MLLR Transformations for Robust Speaker-Independent Speech Recognition

A novel speech feature generation-based acoustic model training method for robust speaker-independent speech recognition is proposed. For decades, speaker adaptation methods have been widely used. All of these adaptation methods need adaptation data. However, our proposed method aims to create speaker-independent acoustic models that cover not only known but also unknown speakers. We achieve th...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Probabilistic feature-based transformation for speaker verification over telephone networks

Feature transformation aims to reduce the effects of channeland handset-distortion in telephone-based speaker verification. This paper compares several feature transformation techniques and evaluates their verification performance and computation time under the 2000 NIST speaker recognition evaluation protocol. Techniques compared include feature mapping (FM), stochastic feature transformation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997